Selective dissolution of halide perovskites as a step towards recycling solar cells
نویسندگان
چکیده
Most research on perovskite solar cells has focused on improving power-conversion efficiency and stability. However, if one could refurbish perovskite solar cells, their stability might not be a critical issue. From the perspective of cost effectiveness, if failed, perovskite solar cells could be collected and recycled; reuse of their gold electrodes and transparent conducting glasses could reduce the price per watt of perovskite photovoltaic modules. Herein, we present a simple and effective method for removing the perovskite layer and reusing the mesoporous TiO2-coated transparent conducting glass substrate via selective dissolution. We find that the perovskite layer can be easily decomposed in polar aprotic solvents because of the reaction between polar aprotic solvents and Pb(2+) cations. After 10 cycles of recycling, a mesoporous TiO2-coated transparent conducting glass substrate-based perovskite solar cell still shows a constant power-conversion efficiency, thereby demonstrating the possibility of recycling perovskite solar cells.
منابع مشابه
The merit of perovskite’s dimensionality; can this replace the 3D halide perovskite?
This perspective paper focuses on the dimensionality of organic–inorganic halide perovskites and their relevant advantages over 3D perovskites. The charges in two-dimensional (2D) materials are restricted in their movement to the two-dimensional plane; however, their confined structure allows one to tune the optical and electronic properties by varying their thickness. Here we focus on the main...
متن کاملTriple-cation mixed-halide perovskites: towards efficient, annealing-free and air-stable solar cells enabled by Pb(SCN)2 additive
Organo-metal halide perovskites have suffered undesirably from structural and thermal instabilities. Moreover, thermal annealing is often indispensable to the crystallization of perovskites and removal of residual solvents, which is unsuitable for scalable fabrication of flexible solar modules. Herein, we demonstrate the non-thermal annealing fabrication of a novel type of air-stable triple-cat...
متن کاملEnhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling
In lead halide perovskite solar cells, there is at least one recycling event of electron-hole pair to photon to electron-hole pair at open circuit under solar illumination. This can lead to a significant reduction in the external photoluminescence yield from the internal yield. Here we show that, for an internal yield of 70%, we measure external yields as low as 15% in planar films, where light...
متن کاملA composite light-harvesting layer from photoactive polymer and halide perovskite for planar heterojunction solar cells
A new route for fabrication of photoactive materials in organic-inorganic hybrid solar cells is presented in this report. Photoactive materials by blending a semiconductive conjugated polymer with an organolead halide perovskite were fabricated for the first time. The composite active layer was then used to make planar heterojunction solar cells with the PCBM film as the electron-acceptor. Phot...
متن کاملOptical modelling data for room temperature optical properties of organic–inorganic lead halide perovskites
The optical properties of perovskites at ambient temperatures are important both to the design of optimised solar cells as well as in other areas such as the refinement of electronic band structure calculations. Limited previous information on the optical modelling has been published. The experimental fitting parameters for optical constants of CH3NH3PbI3-x Cl x and CH3NH3PbI3 perovskite films ...
متن کامل